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Abstract

Grinding is one of the most versatile methods of removing material from machine parts to provide
precise geometry. Dynamic analysis of the grinding process is necessary to reduce the surface waviness and
roughness induced by vibrations, and to offer a machining accuracy in the order of nanometers.
This research is to investigate the dynamic function of the grinding process. A new approach to

determination of cutting factors in dynamic grinding is proposed. Attention is paid to the mechanisms of
dynamic grinding from the kinematics viewpoint. A non-linear dynamic model is developed to investigate
the dynamic characteristics of the grinding process. The model demonstrates that different vibration
frequencies result in qualitatively different behavior of the grinding machine. The relationship between
grinding force variations and vibration frequency is revealed. The formulas to calculate cutting force
variations are given. A comparison of the theoretical transfer function of dynamic grinding and
experimental one shows good matching.
As a result, the paper significantly expands the opportunities of vibration control of grinding machines.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Grinding is one of the most versatile methods of removing material from machine parts to
provide precise geometry. There is a vast body of theoretical and empirical information in the
literature to assist process planners to select the cutting parameters for grinding operations.
However, little attention has been given to development of knowledge-based systems that allow
for efficient selection of cutting parameters based directly on the work and cutting tool material
properties.
To obtain components with close tolerances it is necessary to perform dynamic analysis of

cutting machines taking into account the dynamic transfer function of the cutting process [1–11].
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Dynamic analysis of the grinding process is also necessary to reduce the surface waviness and
roughness induced by vibrations, and to offer a machining accuracy in the order of nanometers
[5,6].
In our research attention is paid to the mechanisms of dynamic grinding from the kinematics

viewpoint. The process of grinding is based on the relative movements that are performed by
every cutting grain of the grinding wheel and the grounded component. One of the methods that
can be used to obtain the dynamic transfer function of the grinding process is to analyze the
process of transforming relative vibrational movements of the grinding wheel and the component
into instant characteristics of cutting which determine plastic deformation of grounded material
[6]. Relative vibrations cause changes in the prescribed kinematics of the process and,
consequently, changes in the two most important parameters of grinding: the number of grains
concurrently performing cutting at the length of the contact of the grinding wheel ðizÞ and the
component and chip thickness ðazmÞ:
When analyzing the above-mentioned process the following assumptions can be made: (a)

before grinding the grinding wheel and the grounded component have ideal geometry; (b) the
curvedness of the trajectory of the relative movement of the center of the grinding wheel and the
grounded component is less than the curvedness of the grinding wheel; (c) the period of the
relative vibrations of the instrument and the component is at least two times higher than the time
necessary to form the working part of the trajectory of the grains of the grinding wheel.

2. Dynamic model

The theoretical thickness ðazmÞ of the undeformed chips which are obtained under the
prescribed (ideal) kinematics conditions, can be calculated using the following formulas [6]:

azm ¼ 1:41dk0:5
d ðn=V Þ0:5ðt=DÞ0:25 if 10�6pHp10�5; n ¼ 1; ð1Þ

azm ¼ 1:32dk0:4
d ðn=V Þ0:4ðt=DÞ0:2 if H ¼ 0; n ¼ 1:5; ð2Þ

where d is the size of the grain, n the coefficient depending on the deepness of the cutting profile,
H the difference in the heights of two adjacent grains, kd the coefficient depending on the grinding
wheel marking and the conditions of dressing, D the diameter of the grinding wheel, n the speed of
the relative movement of the grinding wheel and the grounded component (at the absence of
vibrations n ¼ n0), V the cutting speed and t the depth of cut (at the absence of vibrations t ¼ t0)
(see Fig. 1).
To ensure that parameters (1) and (2) have their physical sense at the presence of relative

vibrational movements of the grinding wheel and the grounded component, it is necessary to
determine parameters t and n in the system of co-ordinates in which equations of the trajectories
of the grains are the same as those in ideal kinematics. The equations of the two adjacent grains
G1 and G2 can be described as follows [6]:

ZG1 ¼ rojA þ
D

2
sin jA;

YG1 ¼ ro þ
D

2
cosjA;
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ZG2 ¼ roðjB � nÞ þ
D

2
8H

� �
sin jB;

YG2 ¼ ro þ
D

2
8H

� �
cos jB; ð3Þ

where ro ¼ n=oK ; oK is the speed of rotation of the grinding wheel, jA the changing angle of the
contact 0pjApjmax;jmax ¼ ð4t=DÞ0:5: Eq. (3) determine relative positions of the cutting parts of
the trajectories of the two adjacent grains and, consequently, the chip thickness under dynamic
grinding if we use the following equations:

n ¼ nM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2o þ ðdy=dtÞ2

q
;

t ¼ tM ; ð4Þ

where dy=dt is the speed of the relative movement of the grinding wheel and the component along
the axis OYO: So at the presence of relative vibrational movements of the grinding wheel and the
grounded component cutting conditions can be determined as follows (see Fig. 1). Relative instant
speed of cutting nM (that is the speed of the relative movement of the grinding wheel and the
component) is the composition of the vector of the prescribed speed of cutting nO and the vector
which is equal and opposite to the vector of the speed of their relative vibrational movement along
axis OYOðdy=dtÞ: Instant depth of cut tM is the projection of the length of the contact onto the
axis that is perpendicular to the vector of the relative instant speed of cutting nM .
When using parameters n ¼ nM and t ¼ tM in Eqs. (1) and (2), parameter azm determines the

distance between the trajectories of the two adjacent grains, that is the thickness of the chip cut by
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one grain. This makes it possible to use functions for dynamic cutting forces that include
parameters azm and iz:
The instant depth of cut can be determined as follows. If dy=dt > 0 (Fig. 1) then from DOAB

the following parameters can be found:

OB ¼ OC ¼ D=2;

AB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OB2 � OA2

p
;

OA ¼ D=2� tK ;

AB ¼ OB sin j:

Consequently,

j ¼ arcsin
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD � tK ÞtK

p
D

: ð5Þ

Using DOA1B the following parameters can be found:

A1B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OB2 � OA2

1

q
;

OA1 ¼ D=2� tM ;

A1B ¼ OB sinðj� aÞ;

j� a ¼ arcsin
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD � tMÞtM

p
D

: ð6Þ

The angle a can be found from the formula

a ¼ arcsin
dy=dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n20 þ ðdy=dtÞ2
q : ð7Þ

Taking into account that in grinding DbtM ; DbtK ; sin jDj; sin aDa and using Eqs. (5)–(7)
we have the following formula to determine the instant depth of cut:

tM ¼ tK �
dy=dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n20 þ ðdy=dtÞ2
q ffiffiffiffiffiffiffiffiffi

DtK

p
þ

D

4

ðdy=dtÞ2

n20 þ ðdy=dtÞ2
; ð8Þ

where

tK ¼ t0 � y ð9Þ

and y is the relative movement of the grinding wheel and the grounded component (Fig. 1). The
same calculations can be made for dy=dto0: The instant speed of cut can be found using Eq. (4).
Taking into account that n0bjdy=dtj it can be assumed that nMDn0: Consequently, the changes in
the cutting force are basically caused by changing the depth of cut.
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3. Fourier analysis

Analysis of Eq. (8) shows that the process has non-linear character. Harmonic components
caused by DTF can be determined using Fourier analysis

F ðtÞ ¼
a0

2
þ
XN
n¼1

ðan sin notþ bn cos notÞ: ð10Þ

Assuming that

DtK ¼ A sinot ð11Þ

and taking into account that DtK ¼ �y we can obtain the following formula to calculate the
dynamic component of the depth of cut:

DtMDA sinotþ
Aw

ffiffiffiffiffiffiffiffi
Dt0

p
n0

cosotþ
A2o
2o0

ffiffiffiffi
D

t0

r
sinot cosotþ

DA2o2

4n20
cos2 ot: ð12Þ

The Fourier coefficients can be calculated as follows:

a0 ¼
D

4

Ao
n0

� �2

; a1 ¼ A; a2 ¼
A2o
4n0

ffiffiffiffi
D

t0

r
;

b1 ¼
oA

ffiffiffiffiffiffiffiffi
Dt0

p
n0

; b2 ¼
DA2o2

8n20
: ð13Þ

The first harmonic component that can be used to determine the dynamic coefficient of the
grinding process is equal to

jDtM j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ b21

q
: ð14Þ

The angle can be calculated using (13):

F ¼ arctg
b1

a1
: ð15Þ

Taking into account Eqs. (13)–(15) we can obtain the following final formula to determine the
dynamic component of the depth of cut in dynamic grinding:

DtM ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dt0

o
n0

� �2
s

sin otþ arctg
o

ffiffiffiffiffiffiffiffi
Dt0

p
n0

 !
: ð16Þ

4. Discussion

Analysis of Eq. (16) shows that in dynamic grinding the changes in the cutting force is ahead of
the relative vibration of the grinding wheel and the grounded component.
Generally, in grinding the dynamic distance between two adjacent grains is much higher than

changes in the length of the contact between the grinding wheel and the component that are
caused by their relative vibration. Consequently, we can assume that in dynamic grinding the
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number of grains concurrently performing cutting does not change as compared to grinding with
ideal kinematics. So it can be assumed that the changes in the cutting force are caused by the
changes in the chip thickness. However, analysis of Eqs. (1) and (2) shows that the influence of the
depth of cut on the grinding force is not so essential (raising to a power of 0.2–0.25). As a result,
disregard to essential changes in the depth of cutting, the dynamic component of the grinding
force does not significantly change with changes in the frequency of vibration.
Taking into account that the forces that effect a grain are determined by the chip thickness, the

amplitude of the grinding force can be calculated using the following formula:

DP ¼
Dazm

Da0zm

KpA; ð17Þ

where Kp is the static stiffness of grinding; Da0zm is an increase in the chip thickness when the depth
of cut changes according to Dt ¼ A; Dazm is an increase in the chip thickness under vibration

Dt ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dt0

o
n0

� �2
s

:

Consequently, the dynamic coefficients can be determined using the following formula:

KD ¼
DP

DtK

¼ KP 1þ
o
n0

� �2

Dt0

 !b

;

b ¼
0:125 ðn ¼ 1Þ;

0:1 ðn ¼ 1:5Þ:

(
ð18Þ

Finally, amplitude–frequency characteristic of the grinding process can be found from Eq. (18),
phase–frequency characteristic is determined by (15)

Dj ¼ arctg
o

ffiffiffiffiffiffiffiffi
Dt0

p
n0

: ð19Þ

5. Example and experimental results

For example, determine the dynamic characteristic of the grinding process for following
grinding conditions: grinding process—surface grinding, wheel shape—straight; diameter of the
grinding wheel—D ¼ 250 mm; abrasive material—synthetic aluminum oxide, grain size—40
(0.40–0:50 mm), bond—vitrified, grinding wheel grade—CM1, cutting speed—V ¼ 30–35 m=s;
the speed n0 ¼ 10 m=min; cross-feed Sx ¼ 8:5 mm; the depth of cut t0 ¼ 0:005–0:03 mm; the
amplitude of vibration A ¼ 0:001–0:002 mm; and the frequency of vibration f ¼ 0–120 Hz:
The static stiffness of grinding for the above conditions is equal to 7 H=mkm [5,6]. Amplitude–

frequency characteristic of the grinding process, calculated according to Eq. (18), are shown in
Fig. 2. The phase–frequency characteristics, calculated according to Eq. (19), are shown in Fig. 3.
As it can be seen from the graphs, the comparison of the theoretical transfer function of the

grinding process and the experimental ones shows good matching in the considered range of
frequency of vibration.
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6. Conclusions

This paper has developed a non-linear model for the analysis of dynamic characteristics of
grinding processes. The obtained analytical model shows that different vibration frequencies
result in qualitatively different behaviour of grinding machines. The analytical results of the
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Fig. 2. Amplitude–frequency characteristics of the grinding process. Theoretical results: (1) t ¼ 0:005 mm; (2) t ¼
0:02 mm; (3) t ¼ 0:03 mm: Experimental results [5]: :

Fig. 3. Phase–frequency characteristics of the grinding process. Theoretical results: (1) t ¼ 0:005 mm; (2) t ¼ 0:01 mm;
(3) t ¼ 0:03 mm: Experimental results [5]: (a) Y8A (HRC 54–56); (b) 40X (HRC 45–48); (c) 45 (HB 230–270); (d) IIIX15

(HRC 58–62), (e) C 21–40 (HB 180–220).
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transfer function of dynamic grinding are compared to those obtained experimental and it can
concluded that the developed model is valid in the considered range of frequency of vibration.
Future research effort will made on the use of this gained knowledge to the vibration suspensions
of grinding machines.
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